In diesem Jahr hat die FG Sportpsychologie erstmalig einen Präsentationspreis für Jungmitgliederausgeschrieben. Beim Präsentationspreis handelt es sich um einen gemeinsamen Preis der Arbeitsgemeinschaft für Sportpsychologie (asp) und der DGPs FG Sportpsychologie. Dieser Preis steht im Zeichen des Kooperationsvertrags von DGPs und asp und verfolgt das übergeordnete Ziel, Nachwuchswissenschaftler/innen und deren sportpsychologische Forschung in der Psychologie sichtbarer zu machen. Prämiert wird sportpsychologische Forschung von hoher wissenschaftlicher Qualität und Relevanz, die verständlich und ansprechend – im Rahmen eines Präsentationspreis-Symposiums auf der jährlichen asp-Tagung – präsentiert wird. Der/Die Preisträger/in wird darin unterstützt, die eigene Forschung anschließend auf einer DGPs-Tagung (nach Wahl) einer breiten wissenschaftlichen Öffentlichkeit vorzustellen. Der Preis zielt dadurch außerdem darauf ab, für die DGPs zu begeistern und neue FG Mitglieder zu gewinnen.
Der diesjährige Preisträger ist: Dr. Stephan Zahno mit seiner Präsentation zum Thema Risk Optimisation in Action: Differences Between Fixated Aim Points and Movement Outcomes in VR Throwing (Abstract siehe unten). Dr. Zahno überzeugte mit einer theoretisch-hergeleiteten, experimentell sehr gut umgesetzten Studienreihe, die er sehr klar und anschaulich dargestellt und diskutiert hat. Er damit zum ersten Preisträger des Präsentationspreises, auf dessen zukünftige Arbeiten wir uns freuen dürfen. Wir sind gespannt, an welcher DGPs Tagung Dr. Zahno - mit Unterstützung des Preisgeldes -teilnehmen und seine Forschung vorstellen wird.
Abstract
Risk Optimisation in Action: Differences Between Fixated Aim Points and Movement Outcomes in VR Throwing
Movement outcomes are inherently subject to variance. Dealing with this variance is crucial to action planning and control, especially in risky situations. Research on simple finger-pointing movements has shown that humans adapt strategies to their own motor variance to optimise penalties or rewards of potential outcomes (Trommershäuser et al., 2008). However, the question remains whether this mechanism extends to more complex tasks. In three experiments, we thus investigated how humans handle risks in a VR throwing task.
In Experiment 1, 20 participants had the task of throwing balls on a green target circle, gaining 100 points for each hit. The target was partially overlapped by a red penalty circle. We manipulated the consequences of hitting the penalty circle (no-penalty = 0 points vs penalty = -500 points) and the distance between both circles (30 cm vs 45 cm vs 60 cm). We assessed participants’ final gaze fixation before movement initiation—as an indicator of their planned aim point before execution—and the ball’s impact location.
In the no-penalty condition, the final fixation and the ball’s impact location were centred on the target. In the penalty condition, both the mean final fixation and the ball’s mean impact location shifted significantly farther away from the penalty circle as the distance decreased. Interestingly, the shifts in the ball’s impact locations were larger—and closer to the statistically optimal location—than those in the fixated aim points. Extending Trommershäuser et al., our results suggest that risk optimisation is not finalized in a planning phase before action execution but continues during ongoing movements. Experiment 2 confirmed the results and ruled out saliency effects. Experiment 3, including an additional -2000 penalty condition, replicated the findings and added that participants adapt their strategies to increasing penalty levels. Experiments testing the online risk optimisation hypothesis further are underway in our lab."
In the submitted work, we address a highly relevant psychological issue in sports: How do athletes handle risks in complex sensorimotor tasks? Take, for example, a ski racer navigating the Super-G course at the 2024 World Cup final in Saalbach Hinterglemm. Throughout their performance, the racer must continuously trade off the risks of getting too close to a gate, potentially leading to a collision, or opting for a safer trajectory that might cost precious time. For the applied field of sports, our work aims to provide a theoretical framework explaining how athletes master this challenge and hopefully supports practitioners in deriving valuable insights. Besides elite sports, understanding risk optimisation strategies is highly relevant for motor disorder rehabilitation (e.g., TReND, cordis.europa.eu/project/id/101119878). Furthermore, our work also contributes to fundamental research in psychology. While powerful explanatory models on motor decision-making under risk have been proposed in basic science (Trommershäuser et al., 2008), to date, their empirical support is limited to simple lab tasks focusing on finger-pointing movements (for a scoping review: Beck et al., 2023). Over recent years, the necessity to test these models in more complex situations has increasingly been emphasised in psychology (e.g., Maselli et al., 2023). To do so, we leverage VR technology to study complex behaviour without compromising rigorous experimental control. Beyond the extrapolation of models from simple lab tasks to complex sensorimotor demands, our research demonstrates that taking on the challenge to address more complex tasks can result in novel theoretical insights—such as online risk optimisation—that have remained unnoticed in classical paradigms. Therefore, we believe that current work in sports psychology—like the here presented—has great potential to enhance both applied sports practice as well as theoretical advancement in general psychology.