next up previous
Next: Author's Address Up: MPR-online 1998, Vol.3, No.2 Previous: Conclusions

Bibliography

1
Andersen, E. B. (1995). Polytomous Rasch models and their estimation. In G. H. Fischer & I. W. Molenaar (Eds.), Rasch models. Foundations, recent developments, and applications (pp. 271-291). New York: Springer.

2
Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561-573.

3
Andrich, D. (1982). An extension of the Rasch model for ratings providing both location and dispersion parameters. Psychometrika, 47, 105-113.

4
Andrich, D. (1985). An elaboration of Guttman scaling with Rasch models for measurement. In N. B. Tuma (Ed.), Sociological Methodology 1985 (pp. 33-80). San Francisco: Jossey-Bass.

5
Andrich, D., de Jong, J. H. A. L. & Sheridan, B. E. (1997). Diagnostic opportunities with the Rasch model for ordered response categories. In J. Rost & R. Langeheine (Eds.), Applications of latent trait and latent class models in the social sciences (pp. 59-70). Münster: Waxmann.

6
Bozdogan, H. (1987). Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52, 345-370.

7
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum.

8
Cressie, N. & Holland, P. W. (1983). Characterizing the manifest probabilities of latent trait models. Psychometrika, 48, 129-141.

9
Duncan, O. D. (1985a). New light on the 16-fold table. American Journal of Sociology, 91, 88-128.

10
Duncan, O. D. (1985b). Some models of response uncertainty for panel analysis. Social Science Research, 14, 126-141.

11
Erdfelder, E., Faul, F., & Buchner, A. (1996). GPOWER: A general power analysis program. Behavior Research Methods, Instruments, & Computers, 28, 1-11.

12
Everitt, B. S. & Hand, D. J. (1981). Finite mixture distributions. London: Chapman and Hall.

13
Faul, F. & Erdfelder, E. (1992). GPOWER: A priori, post-hoc, and compromise power analyses for MS-DOS. University of Bonn: Department of Psychology.

14
Fischer, G. H. (1983). Logistic latent trait models with linear constraints. Psychometrika, 48, 3-26.

15
Fischer, G. H. (1995). Linear logistic models for change. In G. H. Fischer & I. W. Molenaar (Eds.), Rasch models. Foundations, recent developments, and applications (pp. 157-180). New York: Springer.

16
Fischer, G. H. & Formann, A. K. (1982). Some applications of logistic latent trait models with linear constraints on the parameters. Applied Psychological Measurement, 6, 397-416.

17
Fischer, G. H. & Molenaar, I. W. (Eds.) (1995). Rasch models. Foundations, recent developments, and applications. New York: Springer.

18
Fischer, G. H. & Parzer, P. (1991). An extension of the rating scale model with an application to the measurement of change. Psychometrika, 4, 637-651.

19
Fischer, G. H. & Ponocny, I. (1994). An extension of the partial credit model with an application to the measurement of change. Psychometrika, 59, 177-192.

20
Fischer, G. H. & Ponocny, I. (1995). Extended rating scale and partial credit models for assessing change. In G. H. Fischer & I. W. Molenaar (Eds.), Rasch models. Foundations, recent developments, and applications (pp. 353-370). New York: Springer.

21
Glück, J. & Spiel, C. (1997). Item Response-Modelle für Meßwiederholungsdesigns: Anwendung und Grenzen verschiedener Ansätze. [Item response models for repeated measures designs: Application and limitations of different approaches]. Methods of Psychological Research Online, 2. Internet: http://www.pabst-publishers.de/mpr/

22
Kelderman, H. (1984). Loglinear Rasch model tests. Psychometrika, 49, 223-245.

23
Kelderman, H. (1993). Estimating and testing a multidimensional Rasch model for partial credit scoring of children's application of size concepts. In R. Steyer, K. F. Wender & K. F. Widaman (Eds.), Psychometric methodology. Proceedings of the 7th European Meeting of the Psychometric Society in Trier (pp. 209-212). Stuttgart: Fischer.

24
Kelderman, H. (1996). Multidimensional Rasch models for partial-credit scoring. Applied Psychological Measurement, 20, 155-168.

25
Kelderman, H. (1997). Loglinear multidimensional item response models for polytomously scored items. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 287-304). New York: Springer.

26
Kelderman, H. & Rijkes, C. P. M. (1994). Loglinear multidimensional IRT models for polytomously scored items. Psychometrika, 59, 149-176.

27
Langeheine, R. (1983). Nonstandard log-lineare Modelle [Nonstandard log-linear models]. Zeitschrift für Sozialpsychologie, 14, 312-321.

28
Langeheine, R. (1993). Diagnosing incremental learning: Some probabilistic models for measuring change and testing hypotheses about growth. Studies in Educational Evaluation, 19, 349-362.

29
Langeheine, R. & Rost, J. (1988). Latent trait and latent class models. New York: Plenum Press.

30
Langeheine, R., Stern, E., & van de Pol, F. (1994). State mastery learning. Dynamic models for longitudinal data. Applied Psychological Measurement, 18, 277-291.

31
Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149-174.

32
Masters, G. N. & Wright, B. D. (1997). The partial credit model. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 101-121). New York: Springer.

33
Meiser, T. (1996). Loglinear Rasch models for the analysis of stability and change. Psychometrika, 61, 629-645.

34
Meiser, T., Hein-Eggers, M., Rompe, P. & Rudinger, G. (1995). Analyzing homogeneity and heterogeneity of change using Rasch and latent class models: A comparative and integrative approach. Applied Psychological Measurement, 19, 377-391.

35
Meiser, T. & Rudinger, G. (1997). Modeling stability and regularity of change: Latent structure analysis of longitudinal discrete data. In J. Rost & R. Langeheine (Eds.), Applications of latent trait and latent class models in the social sciences (pp. 389-397). Münster: Waxmann.

36
Rasch, G. (1968). An individualistic approach to item analysis. In P. F. Lazarsfeld & N. W. Henry (Eds.), Readings in mathematical social science. Cambridge: MIT Press.

37
Rasch, G. (1980). Probabilistic models for some intelligence and attainment tests. Chicago: The University of Chicago Press. (Original published 1960, Copenhagen: The Danish Institute of Educational Research)

38
Rindskopf, D. (1990). Nonstandard log-linear models. Psychological Bulletin, 108, 150-162.

39
Rindskopf, D. (1992). A general approach to categorical data analysis with missing data, using generalized linear models with composite links. Psychometrika, 57, 29-42.

40
Roskam, E. E. (1996). Latent-Trait-Modelle [Latent trait models]. In E. Erdfelder, R. Mausfeld, T. Meiser & G Rudinger (Eds.), Handbuch Quantitative Methoden (S. 431-458). Weinheim: Psychologie Verlags Union.

41
Rost, J. (1988). Quantitative und qualitative probabilistische Testtheorie [Quantitative and qualitative probabilistic test theory]. Bern: Huber.

42
Rost, J. (1990). Rasch models in latent classes: An integration of two approaches in item analysis. Applied Psychological Measurement, 14, 271-282.

43
Rost, J. (1991). A logistic mixture distribution model for polychotomous item responses. British Journal of Mathematical and Statistical Psychology, 44, 75-92.

44
Rost, J. & Erdfelder, E. (1996). Mischverteilungsmodelle [Mixture distribution models]. In E. Erdfelder, R. Mausfeld, T. Meiser & G Rudinger (Eds.), Handbuch Quantitative Methoden (S. 333-348). Weinheim: Psychologie Verlags Union.

45
Rost, J. & Langeheine, R. (Eds.) (1997) Applications of latent trait and latent class models in the social sciences. Münster: Waxmann.

46
Rost, J. & Spada, H. (1983). Die Quantifizierung von Lerneffekten anhand von Testdaten [Quantifying learning effects using test data]. Zeitschrift für Differentielle und Diagnostische Psychologie, 4, 29-49.

47
Spada, H. & McGaw, B. (1985). The assessment of learning effects with linear logistic test models. In S. Embretson (Ed.), Test design. Developments in psychology and psychometrics (pp. 169-194). Orlando: Academic Press.

48
Stelzl, I. (1997). Wie realistisch sind die Voraussetzungen von Item-Response-Modellen bei der Prüfung experimenteller Hypothesen in Meßwiederholungsdesigns? - Eine Auseinandersetzung mit Glück, J. & Spiel, Ch. (1997) [How realistic are the assumptions underlying item response models for the analysis of experimental hypotheses in repeated measures designs? - A reply to Glück, J. & Spiel, Ch. (1997)]. Methods of Psychological Research - Online, Discussion Section. Internet: http://www.pabst-publishers.de/mpr/forum_e.html

49
Stern, E. (1993). What makes certain arithmetic word problems involving the comparison of sets so hard for children? Journal of Educational Psychology, 85, 7-23.

50
Stern, E. (1998). Die Entwicklung des mathematischen Verständnisses im Kindesalter [The development of mathematical understanding during childhood]. Lengerich: Pabst Publisher.

51
Stern, E., & Lehrndorfer, A. (1992). The role of situational context in solving word problems. Cognitive Development, 7, 259-268.

52
Thissen, D. & Mooney, J. A. (1989). Loglinear item response models, with applications to data from social surveys. In C. C. Clogg (Ed.), Sociological methodology (Vol. 19) (pp. 299-330). Oxford: Basil Blackwell.

53
Titterington, D. M., Smith, A. F. M., & Makov, U. E. (1985). Statistical analysis of finite mixture distributions. Chichester: Wiley.

54
Tjur, T. (1982). A connection between Rasch's item analysis model and a multiplicative Poisson model. Scandinavian Journal of Statistics, 9, 23-30.

55
van der Linden, W. J. & Hambleton, R. K. (Eds.) (1997). Handbook of modern item response theory. New York: Springer.

56
Vermunt, J. K. (1997). LEM: A general program for the analysis of categorical data. Tilburg University: Department of Methodology. Internet: http://cwis.kub.nl/~fsw_1/mto/

57
von Davier, M. & Rost, J. (1995). Polytomous mixed Rasch models. In G. H. Fischer & I. W. Molenaar (Eds.), Rasch models. Foundations, recent developments, and applications (pp. 371-379). New York: Springer.

58
Weinert, F. E. & Helmke, A. (1997). Entwicklung im Grundschulalter [Development in elementary school]. Weinheim: Psychologie Verlags Union.

59
Wilson, M. (1989). Saltus: A psychometric model of discontinuity in cognitive development. Psychological Bulletin, 105, 276-289.



Methods of Psychological Research 1998 Vol.3 No.2
© 1999 Pabst Science Publishers